본문 바로가기
BigDATA/spark

spark_study) AggregateByKey TEST

by 태하팍 2022. 4. 7.
반응형

AggregateByKey 
https://www.projectpro.io/recipes/explain-aggregatebykey-spark-scala

위의 링크를 통해 개념을 살펴보고 아래처럼 작성해보았다.

spark-shell을 사용해서 작성

/usr/local/Cellar/apache-spark/3.1.2/bin/spark-shell

// Bazic aggregateByKey example in scala
// Creating PairRDD studentRDD with key value pairs, Number partitions is 3 defined in parallelize method.
val studentRDD = sc.parallelize(Array(
    ("Joseph", "Maths", 83), ("Joseph", "Physics", 74), ("Joseph", "Chemistry", 91), ("Joseph", "Biology", 82), 
    ("Jimmy", "Maths", 69), ("Jimmy", "Physics", 62), ("Jimmy", "Chemistry", 97), ("Jimmy", "Biology", 80), 
    ("Tina", "Maths", 78), ("Tina", "Physics", 73), ("Tina", "Chemistry", 68), ("Tina", "Biology", 87), 
    ("Thomas", "Maths", 87), ("Thomas", "Physics", 93), ("Thomas", "Chemistry", 91), ("Thomas", "Biology", 74), 
    ("Cory", "Maths", 56), ("Cory", "Physics", 65), ("Cory", "Chemistry", 71), ("Cory", "Biology", 68), 
    ("Jackeline", "Maths", 86), ("Jackeline", "Physics", 62), ("Jackeline", "Chemistry", 75), ("Jackeline", "Biology", 83), 
    ("Juan", "Maths", 63), ("Juan", "Physics", 69), ("Juan", "Chemistry", 64), ("Juan", "Biology", 60)), 3)
 studentRDD.collect()

위에처럼 하려다가 IDE를 사용하는것이 더 편할것 같아서 IDE에서 코딩!

import org.apache.spark.SparkConf
import org.apache.spark.sql.SparkSession


object AggregateByKey {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("AggregateByKey")
    conf.setIfMissing("spark.master", "local[*]")
    val spark = SparkSession
      .builder
      .config(conf)
      .getOrCreate()

    // Bazic aggregateByKey example in scala
    // Creating PairRDD studentRDD with key value pairs, Number partitions is 3 defined in parallelize method.
    val studentRDD = spark.sparkContext.parallelize(Array(
      ("Joseph", "Maths", 83), ("Joseph", "Physics", 74), ("Joseph", "Chemistry", 91), ("Joseph", "Biology", 82),
      ("Jimmy", "Maths", 69), ("Jimmy", "Physics", 62), ("Jimmy", "Chemistry", 97), ("Jimmy", "Biology", 80),
      ("Tina", "Maths", 78), ("Tina", "Physics", 73), ("Tina", "Chemistry", 68), ("Tina", "Biology", 87),
      ("Thomas", "Maths", 87), ("Thomas", "Physics", 93), ("Thomas", "Chemistry", 91), ("Thomas", "Biology", 74),
      ("Cory", "Maths", 56), ("Cory", "Physics", 65), ("Cory", "Chemistry", 71), ("Cory", "Biology", 68),
      ("Jackeline", "Maths", 86), ("Jackeline", "Physics", 62), ("Jackeline", "Chemistry", 75), ("Jackeline", "Biology", 83),
      ("Juan", "Maths", 63), ("Juan", "Physics", 69), ("Juan", "Chemistry", 64), ("Juan", "Biology", 60)), 3)

    println(studentRDD.count())

    def seqOp = (accumulator: Int, element: (String, Int)) =>
      if(accumulator > element._2) accumulator else element._2

    def combOp = (accumulator1: Int, accumulator2: Int) =>
      if(accumulator1 > accumulator2) accumulator1 else accumulator2

    val zeroVal = 0
    val aggrRDD = studentRDD.map(t => (t._1, (t._2, t._3))).aggregateByKey(zeroVal)(seqOp, combOp)
    aggrRDD.collect foreach println

  }


}

너무 간만에 스파크 스터디를 해서...다시 초기화 ㅋㅋㅋ
뭐하는 녀석인지 다시 살펴봐야겠다.

반응형